Oscillating solutions for nonlinear Helmholtz equations
نویسندگان
چکیده
منابع مشابه
On Helmholtz equation and Dancer’s type entire solutions for nonlinear elliptic equations
Starting from a bound state (positive or sign-changing) solution to −∆ωm = |ωm|p−1ωm − ωm in R, ωm ∈ H(R) and solutions to the Helmholtz equation ∆u0 + λu0 = 0 in R, λ > 0, we build new Dancer’s type entire solutions to the nonlinear scalar equation −∆u = |u|p−1u − u in R.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Stable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملSlowly Oscillating Solutions for Differential Equations with Strictly Monotone Operator
The authors discuss necessary and sufficient conditions for the existence and uniqueness of slowly oscillating solutions for the differential equation u′ + F(u) = h(t) with strictly monotone operator. Particularly, the authors give necessary and sufficient conditions for the existence and uniqueness of slowly oscillating solutions for the differential equation u′ +∇Φ(u)= h(t), where∇Φ denotes t...
متن کاملNew Exact Solutions for Two Nonlinear Equations
Nonlinear partial differential equations are widely used to describe complex phenomena in various fields of science, for example the Korteweg-de Vries-Kuramoto-Sivashinsky equation (KdV-KS equation) and the Ablowitz-Kaup-Newell-Segur shallow water wave equation (AKNS-SWW equation). To our knowledge the exact solutions for the first equation were still not obtained and the obtained exact solutio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für angewandte Mathematik und Physik
سال: 2017
ISSN: 0044-2275,1420-9039
DOI: 10.1007/s00033-017-0859-8